-
1 classification of industrial and related data according to kind of economic activity
классификация данных промышленных предприятий и предприятий, связанных с ними по роду экономической деятельностиАнгло-русский словарь промышленной и научной лексики > classification of industrial and related data according to kind of economic activity
-
2 вид данных
1) Engineering: data description2) Economy: type of data3) Accounting: (исходных) type of data4) Network technologies: data kind5) Programming: sort of data6) SAP.tech. data class -
3 модульный центр обработки данных (ЦОД)
модульный центр обработки данных (ЦОД)
-
[Интент]Параллельные тексты EN-RU
[ http://dcnt.ru/?p=9299#more-9299]
Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.
В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.
At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.
В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.
Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.
Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.
Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.
Was there a key driver for the Generation 4 Data Center?Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
Был ли ключевой стимул для разработки дата-центра четвертого поколения?
If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.
One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:
The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:
Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.The second worst thing we can do in delivering facilities for the business is to have too much capacity online.
А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.
This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
So let’s take a high level look at our Generation 4 designЭто заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
Давайте рассмотрим наш проект дата-центра четвертого поколенияAre you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.
It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.
From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.
Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:
Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.
С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.
Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.
Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.
Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.
Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.
Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.
Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
Мы все подвергаем сомнениюIn our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.
В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
Серийное производство дата центров
In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
Невероятно энергоэффективный ЦОД
And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
Строительство дата центров без чиллеровWe have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.
Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.
By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.
Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.
Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.
Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
Gen 4 – это стандартная платформаFinally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.
Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
Главные характеристики дата-центров четвертого поколения Gen4To summarize, the key characteristics of our Generation 4 data centers are:
Scalable
Plug-and-play spine infrastructure
Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
Rapid deployment
De-mountable
Reduce TTM
Reduced construction
Sustainable measuresНиже приведены главные характеристики дата-центров четвертого поколения Gen 4:
Расширяемость;
Готовая к использованию базовая инфраструктура;
Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
Быстрота развертывания;
Возможность демонтажа;
Снижение времени вывода на рынок (TTM);
Сокращение сроков строительства;
Экологичность;Map applications to DC Class
We hope you join us on this incredible journey of change and innovation!
Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.
Использование систем электропитания постоянного тока.
Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!
На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.
Generations of Evolution – some background on our data center designsТак что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
Поколения эволюции – история развития наших дата-центровWe thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.
Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.
It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.
Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.
We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.
Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.
No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.
Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.
As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.
Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.
This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.
Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.
Тематики
Синонимы
EN
Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)
-
4 датчик
transmitter, sensor, pickup,
pick-off, transducer
первичный механизм, воспринимающий измеряемую величину в той или иной форме, чаще всего механичеекой, и передающий эту величину указателю в виде электрических импульсов. — а device used for generation of signals of any type and form which are to be transmitted.
- (преобразователь) — transducer
устройство, служащее для преобразования сигнала или физической величины одного вида в соответствующую физическую величину др. вида, — а device used for converting а signal or physical quantity of one kind into a corresponding physical quantity of another kind.
- (общий термин для датчиков сельсинов и скт) — control transmitter
- автомата торможения (рис. 32) — skid detector
- автоматики (топливомера) — level switch
- акселерометра (акселерометер) — accelerometer
-, аналоговый — analog sensor
-, антиюзовый — skid detector
- аэродинамических углов (дау) — airflow-angle sensor, airflowdirection sensor
-, барометрический (типа kb-11) — pressure altitude sensor
- барометрической высоты (системы мсрп) — (pressure) altitude sensor
-, безконтактный — contactless sensor
- ветра — wind unit
- вибрации — vibration pickup
- вибрации (вибрационный), вертикальный — vertical vibration pickup
- вибрации (вибрационный), горизонтальный — horizontal vibration pickup
- вибрации двигателя — engine vibration pickup
- вибрации, магнитный — magnetic vibration pickup
-, вибрационный — vibration pickup
- водности (системы сигнализации обледенения) — water-content sensor
- воздушной скорости (двс) — airspeed transmitter (sensor)
двс предназначен для измерения воздушной скорости и выдачи соответствующего сигнала в систему автоматического управления полетом, — the purpose of the airspeed transmitter is to sense airspeed and provide a signal representing the sensed airspeed to an automatic flight control system for continuous gain changing.
- воздушных параметров (систем мсрп) — air data sensor (ads)
- воздушных сигналов — air data sensor
двс преобразует величины полного и статического давлений в электрические сигналы для работы системы в режимах высота, ивс и верт. скорость — ads converts pitot and static pressure to electrical signals for alt, ias, and vs modes
- воздушной коррекции — altitude transmitter
двк служит для измерения статического давления и выдачи соответствующих эл. сигналов с потенциометра — the altitude transmitter senses static pressure (altitude) and provides appropriate potentiometer output signals.
- высоты (дискретный, пороговый) — altitude switch
прибор, в котором происходит замыкание или размыкадатчик — an instrument in which electrical contacts are made or
ние контактов при достижении заданной высоты — broken at а predetermined height.
- высоты (пропорциональный) — altitude transmitter
- давления — pressure transmitter
датчик, выдающий электрический сигнал пропорциональный измеряемому давлению, — а transducer for providing an electrical signal proportional to the pressure to be measured.
- давления, индуктивный — induction pressure transmitter
- давления, манометрический — pressure transmitter,
- давления масла — oil pressure transmitter
- давления, приемный (сигнализатора обледенения) — pressure sensing probe
- давления, пьезоэлектрический — piezoelectric pressure transmitter
- давления топлива — fuel pressure transmitter
- давления топлива перед насосом-регулятором — fcu inlet fuel pressure transmitter
- давления, эталонный (сигнализатора обледения) — reference pressure probe
-, дифференциальный — differential transmitter
- замыкающего скачка уплотнения — terminal shock sensor
- заправки (топливных) кессонов — fuel quantity transmitter
- изменения высоты (высотный корректор автопилота) — altitude controller
- измерителя крутящего момента (икм) — torque pressure transmitter
-, индуктивный (манометра) — induction pressure transmitter
- индукционного манометра — induction pressure transmitter
-, индукционный (ид, из комплекта гидроиндукционного компаса) ид выдает эл. сигнал пропорциональный вепичине магнитного поля земли, действующего вдоль оси датчика. — flux-gate (detector) /valve/ flux-gate detector gives the electrical signal proportional to the intensity of the external magnetic field acting along its axis.
-, индукционный (сельсин-датчик) — linear synchro transmitter
-, инерциальный (противоюзовый) — (inertial) skid detector
срабатывает при определенной угловой скорости вращения тормозного колеса.
- интенсивности обледенения (до) — icing rate detector
- истинной воздушной скорости — true airspeed transmitter (ias xmtr)
- компенсирующего момента (датчика линейных ускорений) — acceleration sensor/accelerometer/torquer
-, контактный — contact pick-off
датчик, в котором относительное перемещение (подвижного элемента) замыкает или разрывает электрическую цепь. — а pick-off in which relative displacement makes and/or breaks an electric circuit.
- крена (сельсин) — roll (signal) transmitting synchro
- крена, кренов (дк, автопилота для выдачи сигналов крена и тангажа) — vertical gyro (vg)
- крена, гироскопический — roll gyro
- крена гировертикали — vertical gyro roll pick-up, roll pick-up of remote vertical gyro
- крена и тангажа (гироплатформы) — pitch and roll gyro
- крена и тангажа (курсовертикали) — vertical gyro (vg)
- критических углов атаки — stall sensor
- курса (гироплатформы) — azimuth gyro
- курса (курсовертикали) — directional gyro
- курсового угла гироплатфомы — stable platform azimuth gyro
- курсовых углов (дку, астрокомпаса) — star tracker unit
- линейных ускорений (дпу) — linear acceleration sensor, linear accelerometer
- магнитного курса (индукционный, ид) — flux gate detector
-, магнитный (в системе дгмк) " — magnetic detector
- мановакууметра (пд) — manifold pressure transmitter
- манометра — pressure(gage)transmitter
- манометра масла — oil pressure transmitter
- манометра топлива — fuel pressure transmitter
- масломера (в баке) — oil quantity/level/transmitter
- мгновенного расходомера — rate-of-flow transmitter/metering unit/
- (сигнализатор) минимального давления масла — minimum oil pressure switch
- момента акселерометра — accelerometer torquer
(дмаx, дмау, дмаz - относительно соответствующих осей) — the torquer coils restore the pendulum to null.
- момента (моментов) гироскопа — gyro torquer
(дмwх, дмwу относительно соответствующих осей) — electromagnetic torquer is provided so that а calibrated torque can be applied to the gyro wheel at the known rate.
-, моментный (гироскопа) — qyro torquer
-, моментный (датчик компенсирующего момента датчика линейных ускорений) — acceleration sensor/accelerometer/torquer
- моментов, момента, моментный (в сельсинной передаче) — torque transmitter. control transmitters are often made identical to torque transmitters.
- обледенения (до) — ice detector
- обнаружения пожара — fire detector
- оборотов (регулятор) — speed governor
- оборотов (тахометра) — tachometer generator
- оборотов (чувствительный элемент регулятора) — speed sensor
- оборотов колеса — wheel speed transducer
- обратной связи (дос) — feedback (position) transducer
- (поворота) оси крена (гироплатформы) — roll-axis pickout
- (поворота) оси курса (гироплатформы) — azimuth-axis pickoff
- (поворота) оси тангажа (гироплатформы) — pitch-axis pickoff
- отклонения от заданной скорости (в указателе скорости) — speed deviation transmitter (in airspeed indicator)
- отклонение руля (поверхно сти управления) (дор) — control surface position transmitter
- отклонения руля, сельсинный — control surface position synchro
- относительного направления воздушного потока — airflow-direction sensor
- отношения давлений — pressure ratio transmitter
- отрицательного крутящего момента — negative torque pickup
- отрицательной тяги (твд) — propeller-drag pickup
- перегрева (двигателя) (дп). срабатывает при повышении температуры во внутренней полости двигателя до 550ё150 ос. — engine overheat detector (ovht det)
- перегрева (сигнализатор пожара) — fire detector
- перегрева (термосигнализатор) — thermal switch
- перегрева, термопарный (дп) — thermocouple-type overheat detector
- перегрузок — acceleration sensor, accelerometer
- перегрузок (системы мсрп) — acceleration sensor
- переменной индуктивности, безконтактный — contactless variable inductance (type) sensor
- перемещений (дп) — position transmitter
- поворота — rate-of-trun sensor
гироскопический датчик сигналов на указатель поворота командного прибора директорного управления. — а gyro-operated device that puts out electrical signals to operate the rate-of-turn indicator of the fd indicator.
- поворота оси крена (курса, тангажа) (гироплатформы) — roll (azimuth, pitch) - axis pickoff
- пожарной сигнализации (дпс) — fire detector
-, потенциометрической (потенциометр) — potentiometer
-, потенциометрический — potentiometer transmitter/pickoff/
датчик, в котором перемещение его двух элементов изменяет расстояние между ползунком и неподвижным выводом потенциометра, находящегося под током. — а pick-off in which relative displacement of its two components varies the distance between а sliding contact and fixed tapping point on a potentiometer energized by an applied voltage.
- предельных оборотов — top speed transmitter
- (-) преобразователь — transducer
- приборной скорости (системы мсрп) — ias sensor
- приведенных оборотов — engine speed sensing unit
- противопожарный (дп) — fire detector
-, пьезоэлектрический — piezoelectric/ceramic, crystal/ transducer
- рамы: рамки (гироскопа) — gimbal pickoff
- рассогласования (в следящей системе стабилизации гироплатформы) — error sensor. angle-measuring gyres are used as error sensors stabilization servo loops.
- расходомера воздуха (урвк) — venturi/venturi/tube
- расходомера топлива — fuel flow transmitter/metering unit/
- режимов (др) — throttle (valve) position transmitter
датчик положения рычага насоса-регулятора.
- рыскания (флюгерный) — yaw vane
-, сельсинный — synchro control transmitter (сх)
сельсин, ротор которого поворачивается механически для выдачи эл. сигналов, соответствующих угловому попожению ротора. — а synchro, the rotor of which is mechanically positioned, for transmitting electrical information corresponding to angular positions of the rotor.
-, сельсинный, дифференциальный — synchro control differential transmitter (cdx)
обычно используется для выдачи сигналов на сельсины приемника (ckt). — normally used to supply control transformers or other control differential transmitters.
- (-) сигнализатор времени — time switch
-(-) сигнализатор с магнитоуправляемым, контактом (дмск, топливомера) — fuel quantity transmitter with magnet-operated level switch
- (-) сигнализатор углов атаки (дсу) — contacting angle-of-attack transmitter /sensor/
- (-) сигнализатор уровня (топпива) — (fuel) level switch
- сигнализатора льда (длс) — ice detector
- сигнализации положения (опоры) шасси — landing gear position transmitter
- (синусно-косинусный трансформатор) — resolver control transmitter (rx)
resolver-type component (fourwire synehro) may be modified for service as fourwire transmitter (rx).
системы сигнализации пожаpa — fire detector
- скорости вращения турбины — turbine tachometer generator
- скорости, доплеровской — doppler velocity sensor
для выдачи сигналов путевой скорости и угла сноса — ground speed and drift angle are supplied from a doppler velocity sensor.
- скорости и плотности (воздуха) (дсп) — airspeed and density transmitter
- ckt (синусно-косинусный трансформатор) — resolver (type) control transmitter (rx)
- суммирующего расходомера — total flow transmitter /metering unit/
- t4 (температуры газов за турбиной) — egt/tgt/probe
- тангажа (сельсин) — pitch (signal) transmitting synchro
- тангажа гировертикали — vertical gyro pitch pick-up, pitch pick-up of remote verti
- тангажа, гироскопический — pitch gyro
- тангажа и рыскания, флюгерный (на штанге в носовой части фюзеляжа) — probe with pitch and yaw vanes
- тахометра — tachometer generator
- тахометрической аппаратуры, индукционный (дта) — (induction) speed transducer
- температуры — temperature sensor /probe/
- температуры (выходящих) газов за турбиной (термопарный) — turbine gas temperature (thermocouple-type) probe, tgt probe
- температуры заторможенноro потока (температуры полного торможения) — total temperature sensor
- температуры наружного воздуха (типа п-5) — outside air temperature probe, oat probe
- температуры полного торможения (возд. потока) — total temperature sensor /probe/
- температуры торможения возд. потока (на входе в гтд) — (engine inlet) total /stagnation, ram/ temperature probe
- термометра выходящих газов (термопарный) — exhaust gas thermocouple (probe)
- термометра сопротивления — temperature bulb
- топливомера — fuel quantity transmitter, tank unit
- топливомера, емкостный — capacitance-type fuel quantity transmitter
работает на принципе изменения своей электрической емкости в зависимости от уровня топлива в баке. — the capacitance-type fuel quantity transmitter is a tank unit which serves as a probe whose capacitance depends upon the fuel quantity.
- топливомера, поплавковый — float-type fuel quantuty transmitter
- топливомера e сигнализатором кровня — fuel quantity transmitter with level switch
- угла — angle transducer
служит для выдачи угловой информации в систему воздушных сигналов. — angle transducer transmits angle information to the airdata computer.
- угла (синусно-косинусный трансформатор) — resolver (control transmitter), resolver's control transmitter
- угла (w, v, y) — (w, v, y) angle pickoff, (azimuth pitch, roll) angle pickoff
- угла акселерометра (дуаx, дуау, дуаz, относительно соответствующих осей) — accelerometer (pendulum) angle /rotation/ pickoff.
- угла (углов) атаки (дуа) — angle of attack sensor /transmitter/, alpha sensor, airflow angle sensor
датчик для замера угла набегающего потока относительно произвольной линии отсчета (местный угол атаки или скольжения) — the angle of attack trnasmitter is designed to measure angles of airflow with respect to an arbitrary reference line (local angle of attack or slideslip).
- угла атаки (однофлюгерный) — angle of attack sensor, alpha sensor
- угла атаки (флюгерный) — angle-of-attack vane
- угла атаки и приемник пвд, комбинированный — combined pitot-static-flow angle sensor
- угла атаки и скольжения — angle of attack and slideslip sensor /transmitter/
- угла атаки флюгерного типа — vane-driven angle of attack sensor /transmitter/
- угла гироскопа (дуx, дуу, дуz по соответствующим — gyro (gimbal) angle pickoff /transducer/
осям) — if the gyro case rotates the gimbal angles change and the pick off detects the rotation.
the gimbal angles are measured by transducers.
- yrлa гироскопа (типа скт) — gyro (gimbal) angle resolver
the gimbal angles are measured by transducers usually resolvers.
- угла, гироскопический (крена, направления (курса), тангажа. общий термин) — displacement gyro
- угла (поворота) инерционной массы (маятника) акселерометра — accelerometer pendulum angle/rotation/ pickoff the pickoff coils detect rotation (angle) of the pendulum from the null position.
- угла карданной рамы гироскопа — gyro gimbal angle pickoff /transducer/
- угла крена (гироскопа) — roll gyro
- угла крена (сельсин-датчик на оси крена агд-1) — roll (signal) transmitting synchro
- угла крена и тангажа (агд) — vertical gyro
- угла кренов (крена и тан — vertical gyro
- угла курса (гироскопический) — directional gyro
в качестве д.у.к. применяется гироагрегат курсовертикали
- угла маневра (сельсин-датчик системы курсовертикали — attitude change angle (signal) transmitting synchro
- угла маневра (cкт-датчик инерциальной системы) — attitude change angle resolver (control transmitter)
- угла направления (курса) — directional gyro (dg), azimuth gyro
- угла отклонения поверхности управления — control surface position /angle/ transmitter
- угла (курса, крена, тангажа) поворота оси гироплатформы (синусно-косинусные трансформаторы скт) — (azimuth, roll, pitch) resolver (control transmitter)
- угла рамы (рамки) гироскопа) — gyro gimbal angle pickoff
- угла тангажа (гироскопа) — pitch gyro
- угла тангажа (сельсин-датчик на оси тангажа агд-1) — pitch (signal) transmitting synchro
- угловой скорости (гироскопический, дус) — rate gyro/sensor/
дус - двухстепенный гироскоп с ограниченной пружиной степенью свободы рамки таким образом, что отклонение оси вращения является величиной угловой скорости корпуса прибора. — rate gyro has one degree of freedom other than spinning one and so constrained that deflection of the spin axis relative to the case is the measure of angular velocity of the case.
- угловой скорости крена — roll rate gyro /sensor/
- угловой скорости крена и тангажа — pitch and roll rate gyro /sensor/
- угловой скорости рыскания — yaw rate gyro /sensor/
- угловой скорости тангажа — pitch rate gyro /sensor/
- угловых перемещений — angular displacement transmitter, position transmitter
- угловых положений поверхностей управления (рулей) — control surface position /angle/ transmitter
- указателя оборотов (тахометра) — tachometer generator, rpm indicator generator
- указателя положения закрылков — flap position transmitter
- указателя положения заслойки (клапана) — valve position transmitter
- указателя положения шасси — landing gear position transmitter
- указателя положения элементов самолета (узп) — position transmitter
- уровня (жидкости в баке) — fluid quantity transmitter
- уровня масла в маслобаке — oil quantity transmitter
- уровня масла (в маслобаке для включения сигнальной лампы или табло) — oil level switch
- усилий (ду, в проводке управления) — control force sensor
- усилий по крену (ду-к) — roll control force sensor
- усилий по тангажу (ду-т) — pitch control force sensor
- ускорений — acceleration sensor, accelerometer
- усталостных трещин — fatigue crack probe
- флюгирования (возд. винта) по крутящему моменту — torque-actuated autofeather pickup /sensor/
- флюгирования (возд. винта) по отрицательной тяге — drag-actuated /activated/ autofeather pickup /sensor/
-, центробежный (противоюзовый, тормозного колеса) — (centrifugal) skid detector
срабатывает при определенной угловой скорости вращения колеса.
-, центробежный (датчика приведенных оборотов) — centrifugal flyweights assembly
- часового расходомера — rate-of-flow transmitter /metering unit/
- частоты вращения (дчв) — tachometer generator
- частоты вращения (числа оборотов) второго (ii) или первого (i) каскада компрессора — hp (or lp) rotor tachometer generator
-, четырехобмоточный (типа скт) — four-wire transmitter (of resolver-type (rx))
- числа оборотов — tachometer generator
-, электроемкостный (топливомера) — capacitance-type fuel quantity transmitter, capacitance-type fuel tank unit
- юза (инерциальный) (рис. 32) — skid detector
- a руд (датчик режимов) — throttle position transmitterРусско-английский сборник авиационно-технических терминов > датчик
-
5 Б-264
КАКОЙ БЫ TO НИ БЫЛО AdjP modif fixed WOanyany... (at all (whatsoever, whatever))(in limited contexts) any sort (kind) of no matter what sort (kind) (of).При настоящих, усложнённых формах государственной и общественной жизни в Европе возможно ли придумать какое бы то ни было событие, которое бы не было предписано, указано, приказано государями, министрами, парламентами, газетами? (Толстой 7). With the present complex forms of political and social life in Europe, can one think of any event that would not have been prescribed, decreed, or ordered by monarchs, ministers, parliaments, or newspapers? (7a).Только при полном отсутствии каких бы то ни было сведений об общественной жизни тайна будет сохранена (Зиновьев 1). The secret can only be preserved in the complete absence of any data at all about social life (1a)..Как бы ни хотел учёный быть объективным, одним последовательным перечислением известных фактов — он уже рисует, даже помимо воли, определённую жизненную картину и расстановку сил в нашем сознании. Но... в этой картине неизбежно отсутствует какая бы то ни было полнота... (Битов 2)....However objective a scholar may wish to be, let him merely enumerate a sequence of known facts and he is already, even against his will, drawing a well-denned picture of life and an arrangement of forces in our consciousness. But...that picture inevitably lacks any sort of completeness... (2a).Он так устал от целого месяца этой сосредоточенной тоски своей и мрачного возбуждения, что хотя одну минуту хотелось ему вздохнуть в другом мире, хоть бы в каком бы то ни было... (Достоевский 3). After а whole month of concentrated melancholy and gloomy excitement, he was so weary he wanted to take breath in some other world, no matter what kind (3b). -
6 какой бы то ни было
[AdjP; modif; fixed WO]=====⇒ any:- any... (at all <whatsoever, whatever>);- [in limited contexts] any sort (kind) of;- no matter what sort (kind) (of).♦ При настоящих, усложнённых формах государственной и общественной жизни в Европе возможно ли придумать какое бы то ни было событие, которое бы не было предписано, указано, приказано государями, министрами, парламентами, газетами? (Толстой 7). With the present complex forms of political and social life in Europe, can one think of any event that would not have been prescribed, decreed, or ordered by monarchs, ministers, parliaments, or newspapers? (7a).♦ Только при полном отсутствии каких бы то ни было сведений об общественной жизни тайна будет сохранена (Зиновьев 1). The secret can only be preserved in the complete absence of any data at all about social life (1a).♦...Как бы ни хотел ученый быть объективным, одним последовательным перечислением известных фактов - он уже рисует, даже помимо воли, определённую жизненную картину и расстановку сил в нашем сознании. Но... в этой картине неизбежно отсутствует какая бы то ни было полнота... (Битов 2)....However objective a scholar may wish to be, let him merely enumerate a sequence of known facts and he is already, even against his will, drawing a well-defined picture of life and an arrangement of forces in our consciousness. But...that picture inevitably lacks any sort of completeness... (2a).♦ Он так устал от целого месяца этой сосредоточенной тоски своей и мрачного возбуждения, что хотя одну минуту хотелось ему вздохнуть в другом мире, хоть бы в каком бы то ни было... (Достоевский 3). After a whole month of concentrated melancholy and gloomy excitement, he was so weary he wanted to take breath in some other world, no matter what kind (3b).Большой русско-английский фразеологический словарь > какой бы то ни было
-
7 опубликованный
•No such data can be found in the available (or published) literature.
•No quantitative data of this kind have previously been repor ted.
Русско-английский научно-технический словарь переводчика > опубликованный
-
8 ГЛАГОЛ
1. ГЛАГОЛ повторяется в настоящем, прошедшем и будущем времени, чтобы подчеркнуть непрерывность@ делаем и будем делатьМы поддерживали и будем поддерживать прифронтовые государства Африки. –We have always supported the front-line African states. We are continuing to support the front-line African states. We shall continue to support the front-line African states. We shall continue our support ( глагол заменяется существительным) for the front-line African states. @ не делаем и не сделаемРоссия не ослабляет и не ослабит усилий, направленных на то, чтобы отвести от человечества военную угрозу.Russia will not slacken its efforts/will persist in its efforts/will continue its efforts to protect mankind from the threat of war. @ не делали и не делаемПереводится обязательно сложным временем.Мы никогда не искали и не ищем себе выгод – будь то экономические, политические или иные. – We have never sought profits/advantages for ourselves – be they economic, political, or any other kind. @ делали и делаемМы предлагали и предлагаем договориться о полном запрещении ядерного оружия. –We are continuing to propose/continue to propose/continue to favor/we have always favored/always proposed agreement on a total nuclear weapons test ban. @ не сделали и не сделаемНаша страна не допустила и не допустит вмешательства в свои внутренние дела. –Our country has never allowed/will never allow/will continue to prevent/oppose interference in its internal affairs. @ делали и будем делатьМы выступали и будем выступать в их поддержку. -We shall continue to support them. (Лучше чем We have always supported them) @2. ГЛАГОЛ, повторенный через дефисkeep \+ verbЯ иду-иду, уже сил нет, а все еще далеко до места. – I keep/kept on going, but it is/was still a long distance to/far to the place.On I went,/I walked and walked, but… *** Он смотрел-смотрел, никак не мог разглядеть. – He kept on looking but/No matter how he looked he could not make it out.3. передача инфинитива при помощи будущего времениДети есть дети. – Children will be children.4. повелительное наклонениеа) в условном времениПриди я вовремя, ничего бы не случилось. – If I had come in time nothing would have happened.б) для выражения протеста против необходимости выполнять нежелательные действияТебе хорошо с гостями чаи распивать, а я дома сиди. – You’re having fun drinking tea with the guests while/but I’ve got to stay home.Сами гулять пойдете, а я пиши. – You can/go off on your own, I’ve got to write/ I’m stuck with the writing.с) неожиданное или непредвиденное действиеОн меня позвал – я споткнись, чашку разбил. – He called out to me and I stumbled and broke a cup.Дорога ровная – а он возьми и упади. – The road was flat/even when all of a sudden he fell.5. Настоящее время, описывающее серию событий в прошлом, переводится прошедшим.Возвращаюсь я вчера вечером домой, иду по нашей улице, вдруг слышу знакомый голос. – Last night as I was going home, walking down our street, I suddenly heard a familiar voice.6. Настоящее время переводится и настоящим, и будущим.Я уезжаю через неделю, завтра я весь день работаю, а вечером сижу дома. – I’m leaving in a week – tomorrow I’ll work/I’m working all day and in the evening I’ll be home.7. Совершенный вид русских глаголов, выражающих повторное действие, переводится с помощью длительного настоящего времени.Сегодня мне весь день мешают – то кто-нибудь придет, то телефон зазвонит. – I’m being bothered all day – people keep coming in and the phone keeps ringing.8. Описание характерного или привычного поведения человека.Он всегда прибежит, накричит, наскандалит, а потом удивляется, почему его не любят. – He’s always barging in/rushing in screaming/yelling at someone/causing trouble/insulting people/offending people/raising a row and then he wonders why/is surprised that/and then he asks why people don’t like him.9. В разговорных конструкциях прошедшее время от глаголов «пойти» и «поехать» передается будущим временем.Я пошел. – I’m about to leave.Я поехал, буду через два часа. – I’m off/I’ll be going/I’ll be back in two hours.10. Перевод конструкций типа «то, что» «чтобы»a) Сокращение и переосмыслениеСложность этого эксперимента заключается в том, что он требует длительного времени. – The problem with this experiment is that it requires a lot of time.Утешение было только в том, что он уезжал всего на несколько дней. – The only consolation was that he would be away for long/was leaving for only a few days.б) использование деепричастного оборота (это идиоматичнее и короче)Мы начали вечер с того, что предложили всем потанцевать. – We started the party/evening by suggesting/with the suggestion that everyone dance.Он начал с того, что лично познакомился со всеми.- Не began by introducing himself to everyone/by getting personally acquainted with everyone.в) Порой «чтобы» не переводится, и время глагола определяется контекстом:Я не видел, чтобы он чистил зубы. - I didn't see him brush his teeth/I never saw him brush his teeth.Я хочу, чтобы вы меня правильно поняли. - I want you to understand me correctly/to get what I mean.г) to + infinitive вместо довольно неуклюжей конструкции in order to или so as toЯ вернулся с тем, чтобы предупредить вас. - I came back to warn you.Я пришел не с тем, чтобы спорить с вами. - I didn't come to argue with you.д) Иногда можно заменить «чтобы» словами so that:Говори, чтобы все поняли. - Speak so that everyone understands/gets the point.11. Придаточные предложения, которые начинаются с «как» или с «как бы», можно перевести на английский с помощью условного наклонения или деепричастия.Я люблю смотреть, как он выступает. - I like watching him perform/I like to watch him perform/I like watching him performing.Он боялся, как бы не простудиться. - Не was afraid of catching cold/He was afraid he might/could catch cold.12. «He + инфинитив + бы» требует don't или see that X doesn't do Y.He простудиться бы! - Take care/I'll take care not to/See that you don't catch cold.He забыть бы его адрес! - See you don't/take care not to/be sure you don't/I mustn't/I must take care not to forget his address.13. перевод вида глаголаа) Переводчик должен постоянно иметь в виду, что в английском языке используются совершенно разные глаголы для передачи смысла обоих членов одной русской видовой пары, как, например, «сделать» и «делать»Что же делал Бельтов в продолжение этих десяти лет? Все или почти все. Что он сделал? Ничего или почти ничего. -What did Beltov do during these ten years? Everything or almost everything. What did he achieve? Nothing, or almost nothing. уверить — convince решать — try to solve решить — solve. учиться — study научиться — learn отыскивать — look for отыскать — find сдавать экзамен - to take an exam сдать экзамен - to pass an exam поступать в университет - to apply to a university поступить в университет - be admitted/get into a universityб) При переводе глаголов несовершенного вида нельзя не подчеркнуть, что речь идет о попытках говорящего или кого-то другого что-либо сделать.Войска брали крепость целый месяц. - The troops tried for a whole month to take the fortress.Я к нему долго привыкал, но наконец привык. - For a long time I tried to get used to him, and finally did. He оправдывайся! - Don't try to justify yourselfl/Don't try to make excuses!с)Существует также целая категория особых глаголов, у которых несовершенный вид указывает на состояние, которое является результатом завершенного действия и передается совершенным видом.Я «понимаю» is the result of «я понял», and note that English "I understand" translates them both. The formal pair «разобраться/разбираться» are exactly the same; the verb in «я разобрался в этом» is an achievement with the change-of-state meaning characteristic of perfectives, while the verb in «я разбираюсь в этом» signals the state resulting from the achievement. They may both be translated as / understand, but the former means / have figured out (come to understand), while the latter means I understand (as a result of having figured out). These verbs belong to a very large group of perfectives whose change of state is inceptive, whose imperfectives denote the new, resulting state: «понял, понимаю, поверил, верю, понравиться, нравиться».14. Перевод безличных конструкцийа) Во множественном числе третьего лица безличную конструкцию можно переделать в пассивную:Посетителей просят оставить верхнюю одежду в гардеробе. -Visitors are requested/asked to leave/Visitors must leave/check their coats in the coatroom.б) Можно вставить субъект/подлежащее:Об этом часто приходится слышать. - I/he/we/they often hear about this.Чувствовалось, что он доволен. - I/we/they felt/could feel that he was pleased.в) В некоторых контекстах возвратные глаголы переводятся как переходные с добавлением подлежащего:Под вакуумом понимается пространство, не содержащее вещества. - A vacuum is defined as space/By a vacuum we mean space/The definition of a vacuum is space/A vacuum is understood to be space free from/not containing/devoid of matter.В данном случае сложное движение рассматривается как результат двух движений. - In this case complex movement is considered as/considered to be/we see complex movement as/we define complex movement as the result of two movements.г) Когда русское местоимение является дополнением безличных глаголов, то можно переделать в подлежащее/субъект.В ушах звенело, во рту пересохло. - His/my ears were ringing, his/my throat was dry.Меня неудержимо клонило в сон. - I felt an irresistible urge to sleep/I just couldn't stay awake/I felt horribly/terribly/awfully sleepy. Ее потянуло в Париж. - She felt an urge to go to Paris/Paris was calling to her/She felt like going to Paris. Мне жаль мою подругу. - I'm sorry for my girlfriend.15. Перевод причастий@ДЕЙСТВИТЕЛЬНОЕ ПРИЧАСТИЕ НАСТОЯЩЕГО ВРЕМЕНИ1. переводится на английский глагольной формой на -ing.Девушка, читающая книгу, очень красива - The girl who is reading the book is very pretty.2. переводится с пропуском причастия, т.е. с помощью короткого оборота с предлогом и краткого придаточного предложенияГруппа, имеющая такие блестящие результаты, является гордостью нашего института. - The group with such outstanding results is the pride of our institute.Вопрос, выходящий за рамки данной статьи. - A matter/issue/question beyond the scope of this article.***см. ГЛАГОЛ@ВОЗВРАТНАЯ ЧАСТИЦАобычно переводится оборотом с предлогом:Строящийся завод является одним из новейших в стране. - The factory under construction is one of the newest in the country.***см. ГЛАГОЛ@ПРИНАДЛЕЖАЩИЙможно выразить просто притяжательной формой:Книга, принадлежащая ей. - Her book.***см. ГЛАГОЛ@СТРАДАТЕЛЬНЫЙ ПРИЧАСТНЫЙ ОБОРОТ НАСТОЯЩЕГО ВРЕМЕНИ1. переводятся с русского языка скорее как прилагательные, чем как причастия.Проводимая страной политика одобряется всем народом. - The policy pursued (not "which is being pursued") by our country has the backing/approval of the entire people.2. в некоторых случаях причастие можно просто опустить:Ясно определились позиции, занимаемые обеими сторонами по таким жизненно важным вопросам. - The positions of both sides on such vitally important questions are now clear.***см. ГЛАГОЛ@16. Перевод деепричастий.а) Прошедшее время из русского языка нередко переходит в английский в качестве деепричастия.Мы видели, как дети купались в реке. We saw the children swimming in the river.б) Деепричастие настоящего времени подчас приходится переводить на английский прошедшим:Раза два в год бывал в Москве и, возвращаясь оттуда, рассказывал об этом. Не would visit/used to visit Moscow a couple of times a year, and after returning home/on his return home tell/would tell about it.в) Деепричастие прошедшего времени в некоторых случаях становится деепричастием и в настоящем:Сев за рояль, она заиграла вальс. - Sitting at the piano, she played a waltz.г) При переводе русских деепричастий бывает необходимым объяснение причинных или временных обстоятельств:Выслушав меня внимательно, вы быстро меня поймете. If you listen to me carefully, you'll understand quickly.Почувствовав голод, они решили обедать без гостей. - Because/since they were hungry, they decided to eat without/without waiting for/the guests. Переехав в собственную квартиру, он стал гораздо более самостоятельным человеком. - When/after he moved to his own apartment he became a lot more independent.д) В описательных деепричастных оборотах можно заменить деепричастие конструкцией «with + имя существительное»:Он сидел, закрыв глаза. - Не sat/was sitting with his eyes closed.«Это очень смешно!» — сказал он, засмеявшись. "That's very funny," he said with a laugh.е) Так называемые «безличные» деепричастия, которые часто встречаются в Русских технических текстах, иногда заменяются существительными или перед ними вставляется предлог.Используя эти данные, можно приближенно предсказать процесс. - Use of this data allows us to make an approximate prediction of the process/By using this data, we can make...Изучая эту таблицу, легко видеть, что... - Study of this table makes it clear that.../In studying this table we clearly see that…17. Сокращение глагольных конструкцийПодчас русское словосочетание выражается одним английским глаголом. Смысл передается при помощи приставки или суффикса en-, un-, -ize, -ate.утверждать то, что оказалось чистейшей чепухой – to talk utter nonsenseрасполагать в алфавитном порядке – to alphabetize заставить грубой силой – to bludgeon приводить в систему, распределять по категориям – list, categorize лишать законной силы – to invalidate выводить из строя – to incapacitate поймать в ловушку – to entrapСловарь переводчика-синхрониста (русско-английский) > ГЛАГОЛ
-
9 уплотнение
seal
- (набивка) — packing
-, воздушное — air seal
-, воздушно-масляное — air/oil seal
-, гидравлическое — hydraulic seal
- данных (в регистрирующем устройстве) — data multiplexing
-, контактное — contact seal
-, контактное торцевое — face contact seal
-, лабиринтное — labyrinth seal
бесконтактное устройство для уменьшения утечки жидкости или газа, осуществляемое при помощи ряда последовательных резких изменений проходного сечения на пути утечки. — а kind of seal or gland consisting of baffles, grooves, rings, etc, in an intricate arrangement designed to restrict а flow or to minimize leakage, as behind the rotary element of a compressor.
-, масляное — oil seal
- между ступенями (компрессора), лабиринтное воздушное — interstage air labyrinth seal
-, межступенчатое воздушное — interstage air seal
- опоры, воздушное — bearing air seal
воздушное уплотнение, предотвращающее попадание газов в опору, и утечку масла из опоры компрессора. — the bleed air is fed from the compressor stages to pressurize bearing seals against oil or gas leakage.
- передачи данных (измерений) — data transmission multiplexing multiplex code transmission.
- подшипника (масляное) — bearing (oil) seal
- раструбом (соединения трубопровода) — bell-and-spigot joint seal
-, сальниковое — gland seal
- сфера no конусу (соединения трубопровода) — ball-and-socket joint seal
- типа поршневого кольца подавать давление (обеспечивать наддув) в опору — piston-ring type seal pressurize the bearingРусско-английский сборник авиационно-технических терминов > уплотнение
-
10 отрывочные данные
Русско-английский научно-технический словарь переводчика > отрывочные данные
-
11 выяснить
(= выяснять) clarify, find out, elucidate, clarify, explain• Было собрано достаточно данных такого типа, чтобы выяснить сколь широко....... - Enough data of this kind have now been accumulated to make clear the extent to which...• Необходимо выяснить, действительно ли... - It needs to be ascertained if...• Остается выяснить... - It remains to be seen (whether)... -
12 предоставляться
be permitted, be allowed, be given, be provided• Детали этого простого вычисления предоставляются Читателю. - The details of this straightforward computation are left to the reader.• Знакомые примеры предоставляются (чем-л/где-л). - Familiar examples are provided by...• Нам будет еще часто предоставляться возможность поговорить о... - We shall often have occasion to speak of...• Несколько более трудный пример предоставляется... - A more difficult example is provided by...• Огромное количество технических данных предоставляется... - A vast amount of technical data is supplied by...• Однако важное исключение отсюда (= из этого правила) предоставляется (чем-л). - However, an important exception to this is provided by...• Оставшаяся часть доказательства предоставляется читателю. - The remainder of the proof is left to the reader.• Простейший пример предоставляется (чем-л). - The simplest example is afforded by...• Простейший пример предоставляется (чем-л). - The simplest example is furnished by...• Совершенно другого типа пример предоставляется (чем-л). - An example of an entirely different kind is provided by...Русско-английский словарь научного общения > предоставляться
-
13 уравнение
equation, formula* * *уравне́ние с.
equationуравне́ние ви́да … — an equation of the form …входи́ть в уравне́ние — appear in the equation, enter into the equationвыводи́ть уравне́ние — derive an equationзапи́сывать уравне́ние относи́тельно, напр. ста́ршей произво́дной — write an equation to solve for, e. g., the highest derivativeуравне́ние име́ет еди́нственное реше́ние — the equation has a unique solutionопро́бовать уравне́ние по о́пытным да́нным — check [test] an equation against experimental dataуравне́ние относи́тельно, напр. х — an equation in, e. g., xпо уравне́нию — according to the equationподбира́ть уравне́ние, напр. к гипотети́ческому механи́зму реа́кции — fit an equation, e. g., to a postulated reaction mechanismпревраща́ть уравне́ние в то́ждество — reduce an equation to an identityприводи́ть уравне́ние к сле́дующему ви́ду — reduce an equation to the following formуравне́ние, разреши́мое относи́тельно, напр. х — an equation solvable for, e. g., xразреши́ть уравне́ние относи́тельно, напр. ста́ршей произво́дной — re-write an equation to solve for, e. g., the highest derivative; re-write an equation with, e. g., the highest derivative (on the left-hand side)разреши́ть уравне́ние относи́тельно, напр. х — re-arrange an equation to solve for, e. g., xреша́ть уравне́ние относи́тельно, напр. х — solve the equation for, e. g., xреша́ть уравне́ния совме́стно — solve equations simultaneouslyреша́ть с по́мощью уравне́ния — solve by equationуравне́ние с одни́м неизве́стным — an equation in one unknownсоотве́тствовать уравне́нию — fit an equationсоставля́ть уравне́ние — formulate [form, set up, write] an equationуравне́ние сте́пени n — an equation of degree n [of the nth degree], an nth -degree equationтранспони́ровать уравне́ния — transpose equationsудовлетворя́ть уравне́нию — satisfy an equationуравне́ние адиаба́ты — adiabatic equationалгебраи́ческое уравне́ние — algebraic equationуравне́ние бала́нса — balance (equation)уравне́ние бари́ческой тенде́нции — tendency equationуравне́ние Берну́лли — Bernoulli's theoremбиквадра́тное уравне́ние — biquadratic, biquadratic [quartic] equationуравне́ние Бо́льцмана — Boltzmann equationуравне́ние Ван-дер-Ваа́льса — Van der Waals' equationвеково́е уравне́ние — secular equationве́кторное уравне́ние — vector equationуравне́ние в коне́чных ра́зностях — difference equationуравне́ние во́дного бала́нса — hydrologic [hydrolicity] equationволново́е уравне́ние — wave equationуравне́ние в по́лных дифференциа́лах — total [exact differential] equationуравне́ние второ́й сте́пени — quadratic [second-degree] equationуравне́ние Га́мильтона — canonical equation of motionуравне́ние Ги́ббса-Гельмго́льца — equation of maximum workуравне́ние горе́ния — combustion equationуравне́ние да́льности де́йствия рлк ста́нции, основно́е — (radar) range equationуравне́ние движе́ния — equation of motionуравне́ние движе́ния жи́дкости — flow equationуравне́ние дина́мики — equation of motion, dynamic(al) equationдиофа́нтово уравне́ние — Diophantine equationдифференциа́льное уравне́ние — differential equationдифференциа́льное уравне́ние в по́лных дифференциа́лах — exact (differential) equationдифференциа́льное уравне́ние второ́го поря́дка — second-order differential equationдифференциа́льное уравне́ние в ча́стных произво́дных — partial differential equationдифференциа́льное, обыкнове́нное уравне́ние — ordinary differential equationдифференциа́льное уравне́ние пе́рвого поря́дка — first-order differential equationдифференциа́льное, стохасти́ческое уравне́ние — stochastic differential equationдифференциа́льное уравне́ние управле́ния — control differential equationдифференциа́льно-ра́зностное уравне́ние — differential-difference equationуравне́ние диффу́зии — diffusion equationинтегра́льное уравне́ние — integral equationинтегра́льное уравне́ние пе́рвого ро́да — integral equation of the first kindинтегра́льное уравне́ние Фредхо́льма — Fredholm equationинтегродифференциа́льное уравне́ние — integro-differential equationисхо́дное уравне́ние — input [original] equationкалибро́вочно-инвариа́нтное уравне́ние — gauge-invariant equationканони́ческое уравне́ние — canonical equationквадра́тное уравне́ние — quadratic equationквадра́тное, непо́лное уравне́ние — pure quadratic (equation), incomplete quadratic (equation)квадра́тное, по́лное уравне́ние — affected quadratic (equation), general form of a quadratic equationуравне́ние кинети́ческое уравне́ние — rate [kinetic] equationуравне́ние Клапейро́на — Clapeyron equationуравне́ние коли́чества движе́ния — momentum equationконе́чно-дифференци́руемое уравне́ние — finitely differentiable equationуравне́ние ко́нтурных то́ков — mesh-current [loop-current] equationкуби́ческое уравне́ние — cubic equationлине́йное уравне́ние — linear equationуравне́ние стано́вится лине́йным относи́тельно, напр. вре́мени — the equation becomes linear in, e. g., timeлогарифми́ческое уравне́ние — logarithmic equationуравне́ние Ма́ксвелла — Maxwell's equationмасшта́бное уравне́ние вчт. — transformation equationматериа́льное уравне́ние элк. — constitutive relationма́тричное уравне́ние — matrix equationмаши́нное уравне́ние вчт. — machine equationуравне́ние n [m2]-го поря́дка — equation of the nth order, nth -order equationуравне́ние n [m2]-й сте́пени — nth -degree equation, equation of degree nнеодноро́дное уравне́ние — inhomogeneous [nonhomogeneous] equationнеопределё́нное уравне́ние — indeterminate equationуравне́ние непреры́вности — continuity equationнеприводи́мое уравне́ние — irreducible equationуравне́ние неразры́вности — continuity equationодноро́дное уравне́ние — homogeneous equationокисли́тельно-восстанови́тельное уравне́ние — oxidation-reducton equationопера́торное уравне́ние — operator equationосновно́е уравне́ние — basic equationуравне́ние параболи́ческого ти́па — parabolic equationпараметри́ческое уравне́ние — parametric equationуравне́ние пе́рвого поря́дка — first-order equationуравне́ние пе́рвой сте́пени — simple equationуравне́ние переме́нного то́ка — equation for an alternating currentуравне́ние перено́са — transport [transfer] equationуравне́ние пограни́чного сло́я — boundary-layer equationуравне́ние по́ля — field equationуравне́ние правдоподо́бия — likelihood equationуравне́ние преобразова́ния — transformation equationпрове́рочное уравне́ние ( на чётность) — parity(-check) equationуравне́ние прямо́й в отре́зках — intercept form of [for] the equation of a straight lineуравне́ние прямо́й с угловы́м коэффицие́нтом — slope-intercept form of [for] the equation of a straight lineуравне́ние Пуассо́на — adiabatic equationуравне́ние равнове́сия — equilibrium equationуравне́ние радиолока́ции, основно́е — radar equationуравне́ние радиолока́ции, основно́е, для свобо́дного простра́нства — free-space radar equationуравне́ние разме́рностей — dimensional equationра́зностное уравне́ние — difference equationуравне́ние регре́ссии — regression equationпроверя́ть уравне́ние регре́ссии на адеква́тность по крите́рию Фи́шера — test the adequacy [validity] of the regression equation on the basis of Fisher's variance ratioуравне́ние регули́руемого объе́кта автмт. — plant [process] equationрелятиви́стское уравне́ние — relativistic equationуравне́ние свя́зи — constraint equationскаля́рное уравне́ние — scalar equationскоростно́е уравне́ние — rate [kinetic] equationуравне́ние согласова́ния цвето́в — colour match equationсопряжё́нное уравне́ние — adjoint equationуравне́ние состоя́ния — equation of state, characteristic equationуравне́ние состоя́ния идеа́льного га́за — Clapeyron equationуравне́ние сохране́ния — conservation equationуравне́ние сохране́ния моме́нта коли́чества движе́ния — angular momentum [moment-of-momentum] equationуравне́ние сохране́ния эне́ргии — energy equationуравне́ние с разделя́ющими(ся) переме́нными — equation with variables separable, separable equationуравне́ние сте́пени n — an equation of degree n, an nth -degree equation, an equation of the nth degreeстепенно́е уравне́ние — exponential equationстехиометри́ческое уравне́ние — stoichiometric equationтелегра́фное уравне́ние — telegraphers equationте́нзорное уравне́ние — tensor equationуравне́ние теплово́го бала́нса — heat balance equationуравне́ние теплопрово́дности — heat [heat conduction, heat transfer] equationуравне́ние тече́ния — flow equationто́чное уравне́ние — exact equationуравне́ние траекто́рии — path equationтрансценде́нтное уравне́ние — transcendental equationтригонометри́ческое уравне́ние — trigonometric equationуравне́ние узловы́х потенциа́лов эл. — nodal-voltage equationфункциона́льное уравне́ние — functional equationхарактеристи́ческое уравне́ние — characteristic equationхими́ческое уравне́ние — chemical equationуравне́ние хо́да луче́й опт. — ray-tracing equationцветово́е уравне́ние — trichromatic equationуравне́ние Шре́дингера — Schrцdinger (wave) equationуравне́ние Э́йлера для тре́ния кана́та по цили́ндру — capstan equationуравне́ние Эйнште́йна для вне́шнего фотоэффе́кта — Einstein photoelectric equationэллипти́ческое уравне́ние — elliptic(al) equationэмпири́ческое уравне́ние — empirical equation -
14 подтверждаться
Подтверждаться - to be supported by, to be confirmed by, to be backed up by, to be verified by, to be borne out, to be vindicatedThis in supported by observations of the wear debris produced.This is well confirmed by Fig., which shows data from four different compressors, all of the same hub/tip ratio.This is a well-proven technique and is backed up by the present results.This is verified by the symmetry which was always observed between the laminar separation bubbles on either side of the plate.The K. Commission also had kind remarks for the R. study saying in essence that it had been vindicated.The trends mentioned are well borne out.Русско-английский научно-технический словарь переводчика > подтверждаться
-
15 уравнение
с. equationуравнение вида … — an equation of the form …
-
16 двигатель
- (газотурбинный, поршневой, тепловой) — engine
- (гидравлический, пневматический, электрический) — motor
-, авиационный — aircraft engine
двигатель, используемый или предназначенный к использованию в авиации для перемещения и (или) поддержания ла, на котором он установлен, в воздухе (рис. 46). — an engine that is used or intended to be used in propelting or lifting aircraft.
- аналогичной конструкции — engine of identical design and сonstruction
- без наддува (ид) — unsupercharged engine
-, безредукторный — direct-drive engine
-, безредукторный винто-вентиляторный (незакопоченный) — unducted fan engine (udf)
винтовентиляторы вращаются непосредственно силовой (свободной) турбиной с противоположным вращением рабочих колес. — fans are driven directly by a counter-rotating turbine, eliminating complexity of a reduction gearbox.
-, бензиновый — gasoline engine
-, боковой (рис. 13) — side engine
- в подвесной мотогондоле — pod engine
-, вентиляторный, с противоположным вращением вентиляторов — contrafan engine
- вертикальной наводки, приводной (стрелкового вооружения) — (gun) elevation drive motor
-, винто-вентиляторный (тввд) — prop-fan engine
-, включенный (работающий) — operating/running/engine
-, внешний (по отношению к фюзеляжу) (рис. 44) — outboard engine
- внутреннего сгорания — internal-combustion engine
-, внутренний (по отношению к наружному двигателю) (рис. 44) — inboard engine
- воздушного охлаждения (пд) — air-cooled engine
двигатель, у которого отвод тепла от цилиндров производится воздухом, непосредственно обдувающим их. — an engine whose running temperature is controlled by means of air cooled cylinders.
-, вспомогательный (всу) — auxiliary power unit (apu)
-, выключенный — shutdown engine
-, выключенный (неработающий) — inoperative engine
-, высокооборотный — high-speed engine
-, высотный — high-altitude engine
-, газотурбинный (гтд) — turbine engine
-, газотурбинный (вертолетныи) — helicopter turboshaft engine
-,газотурбинный-энергоузел (стартер-энергоузел) — turbine-starter - auxiliary power unit, starter - apu
- (-) генератор — motor-generator
устройство для преобразования одного вида эл. энергии в другую (напр., переменный ток в постоянный). — а motor-generator combination for converting one kind of electric power to another (e.g. ас to dc)
- горизонтальной наводки, приводной (стрелкового вооружения) — (gun) azimuth drive motor
- двухвальной схемы (турбовальный) — two-shaft turbine engine
-, двухвальный турбовинтовой — two-shaft turboprop engine
-, двухвальный турбореактивный — two-shaft /-rotor, -spool/turbojet engine
-, двухкаскадный — two-rotor /-shaft, -spool/ engine, twin-spool engine
двухвальный турбореактивный двигатель называется также двухроторным или двухкаскадным двигателем. — а two-rotor engine is a twoshaft or two-spool engine with lp and hp compressors and hp and lp turbines.
-, двухкаскадный, двухконтурный, (турбореактивный) — two-rotor /twin-spool/ by-pass turbo-jet engine
-, двухкаскадный, турбовальный, газотурбинный, со свободной турбиной — two-rotor /twin-spool/ turboshaft engine with free-power turbine
-, двухкаскадный, турбовентиляторвый с устройством отклонения направления тяги — two-rotor /twin-spool/ turbofan engine with thrust deflector system
-, двухконтурный — by-pass /bypass/ engine
гтд, в котором, помимо основного внутреннего (первого) контура, имеется наружный (второй) контур, представляющий собой канал кольцевого сечения, оканчивающийся у реактивного сопла. — in а by-pass engine, a part of the air leaving the lp cornpressor is dueted through the by-pass duct around the engine main duct to the exhaust unit to be exhausted to the atmosphere.
-, двухконтурный с дожиганиem во втором контуре — duct-burning by-pass engine
-, двухконтурный со смешиванием потоков наружного и и внутренного контуров — by-pass exhaust mixing engine
-, двухроторный — two-rotor engine
- двухрядная звезда (пд) — double-row radial engine
двигатель, у которого цнлиндры расположены двумя рядами радиально относительнo одного oбщего коленчатоro вала. — an engine having two rows of cylinders arranged radially around а common crankshaft. the corresponding front and rear cylinders may or may not be in line.
-, двухтактный (пд) — two-cycle engine
-, дозвуковой — subsonic engine
-, доработанный по модификации (1705) — engine incorporating mod. (1705), post-mod. (1705) engine
-, звездообразный — radial engine
поршневой двигатель с радиальным расположением цилиндров, оси которых лежат в одной, двух или нескольких плоскостях, перпендикулярных к оси коленчатого вала — an engine having stationary cylinders arranged radially around а commom crankshaft.
-, звездообразный двухрядный — double-row radial engine
-, звездообразный однорядный — single-row radial engine
-, исполнительный (эл.) — (electric) actuator, servo motor
-, исполнительный, канала курса (крена или тангажа) (гироплатформы) — azimuth (roll or pitch) servornotor
-, карбюраторный (пд) — carburetor engine
-, коррекционный (гироскопического прибора) — erection torque motor
-, критический — critical engine
двигатель, отказ которого вызывает наиболее неблагоприятные изменения в поведении самолета, управляемости и избытке тяги. — "critical engineп means the engine whose failure would most adversely affect the performance or handling qualities of an aircraft.
-, крыльевой (установленный на крыле) — wing engine
- левого вращения — engine of lh rotation
-, маломощный — low-powered engine
-, многорядный (пд) — multirow engine
-, многорядный звездообразный — multirow radial engine
-, модифицированный — modified engine
- модульной конструкции — module-construction engine
lp compressor - module i, hp compressor - module 2, etc.
-, мощный — high-powered engine
-, недоработанный no модификацин (1705) — engine not incorporating mod. (1705), pre-mod. (1705) engine
-, незакапоченный — uncowled engine
- непосредственного впрыска (пд) — fuel injection engine
-, неработающий — inoperative engine
-, одновальный (гтд) — single-shaft /single-rotor/ turbine engine
-, одновальный двухконтурный — single-shaft /single-rotor/ bypass engine
-, одновальный турбовентиляторный — single-shaft /single-rotor/ turbofan engine
-, одновальный турбовинтовой — single-shaft turboprop engine
-, одновальный турбореактивный — single-shaft /single-rotor/turbojet engine
-, однорядный (пд) — single-row engine
-, опытный — prototype engine
двигатель определенного тиna, еще не прошедший типовые государственные испытания. — the tirst engine of a type and arrangement not approved previously, to be submitted for type approval test.
-, основной — main engine
-, оставшийся (продолжающий работать) — remaining engine
-, отказавший — inoperative/failed/ engine
- отработки (эл., исполнительный) — servomotor
- отработки следящей системы — servo loop drive motor
- подтяга (патронной ленты) — ammunition booster torque motor
-, поперечный коррекционный (авиагоризонта) — roll erection torque motor
-, поршневой (пд) — reciprocating engine
- правого вращения — engine of rh rotation
-, продольный коррекционный (авиагоризонта) — pitch erection torque motor
-, прямоточный — ramjet engine
двигатель без механического компрессора, в котором сжатие воздуха обеспечивается поступательным движением самого двигателя. — а jet engine with no meehanical compressor, and using the air for combustion compressed by forward motion of the engine.
- работающий — operating engine
-, работающий с перебоями — rough engine
двигатель, работающий с неисправной системой зажигания или подачи топлива (рабочей смеси) — an engine that is running or firing unevenly, usually due to а faulty condition in either the fuel or ignition systems.
- рамы крена (гироплатформы — roll-gimbal servomotor
- рамы курса (гироплатформы — azimuth-gimbal servomotor
- рамы тангажа (гироплатформы) — pitch-gimbal servomotor
-, реактивный — jet-engine
двигатель, в котором энергия топлива преобразуется в кинетическую энергию газовой струи, вытекающей из двигателя, a получающаяся за счет этого сила реакции нenоcредственно используется как сила тяги для перемещения летательного аппарата. — an aircraft engine that derives all or most of its thrust by reaction to its ejection of combustion products (or heated air) in a jet and that obtains oxygen from the atmosphere for the combustion of its fuel.
-, реактивный, пульсирующий — pulse jet (engine)
применяется для непосредственного вращения несущеro винта вертолета. — pulse jets are designed for helicopter rotor propulsion.
-, ремонтный — overhauled engine
серийный двигатель, отремонтированный или восстановленный до состояния, удовлетворяющего требованиям серийного стандарта, и пригодный для дальнейшей эксплуатации в течение установленного межремонтного ресурса. — an engine which has been repaired or reconditioned to а standard rendering it eligible for the complete overhaul life agreed by the national authority.
- с внешним смесеобразованием (пд) — carburetor engine
двигатель внутреннего сгорания, у которого горючая смесь образуется вне рабочего цилиндра. — an engine in which the fuel/air mixture is formed in the carburetor.
- с внутренним смесеобразованием — fuel-injection engine
двигатель, у которого горючая смесь образуется внутри рабочего цилиндра. — an engine in which fuel is directly injected into the cylinders.
- с водяным охлаждением (пд) — water-cooled engine
- с высокой степенью сжатия — high-compression engine
- с нагнетателем (пд) — supercharged engine
- с наддувом (пд) с осевым компрессором (пд) — supercharged engine axial-flom turbine engine
- с передним расположением вентилятора — front fan turbine engine
- с противоточной камерой сгорания (гтд) — reverse-flow turbine engine
- с редуктором — engine with reduction gear
- с форсажной камерой (гтд). двигатель с дополнительным сжиганием топлива в специальной камере за турбиной — engine with afterburner, afterburning engine, reheat(ed) engine, engine with thrust augmentor
- с форсированной (взлетной) мощностью — engine with augmented (takeoff) power rating
- с центробежным компрессором (гтд) — radial-flow turbine engine
-, серийный — series engine
двигатель, изготовляемый в серийном производстве и соответствующий опытному двигателю, принятому при государственных испытаниях для серийного производства. — an engine essentially identiin design, in materials, and in methods of construction, with one which has been approved previously.
- со свободной турбиной — free-luroine engine
двигатель с двумя турбинами, валы которых кинематически не связаны. одна из турбин обычно служит для привода компрессора, а другая используется для передачи полезной работы потребителю, например, воздушному (или несущему) винту. — the engine with two turbines whose shafts are not mechanically coupled. one turbine drives the compressor, and the other free turbine drives the propeller or rotor.
- следящей системы по внутреннему крену (гироплатформы) — inner roll gimbal servomotor
- следящей системы по наружному крену (гироплатформы) — outer roll gimbal servomotor
- следящей системы по курсу (гироплатформы) — azimuth gimbal servomotor
- следящей системы по тангажу (гироплатформы) — pitch gimbal servomotor
-, собственно — engine itself
-, средний (рис. 44) — center engine
- стабилизации гироплатформы — stable platform-stabilization servomotor/servo/
-, стартовый (работающий при взлете) — booster
-, стартовый твердотопливный — solid propellant booster
-, трехкаскадный, турбореактивный, с передним вентилятором — three-rotor /triple-spool, triple shaft/ front fan turbo-jet engine
-, турбовентиляторный — turbofan engine
двухконтурный турбореактивный двигатель, в котором часть воздуха выбрасывается за первыми ступенями компрессора низкого давления, а остальная часть воздуха за кнд поступает в основной контур с камерами сгорания. — in the turbofan engine a part of the air bypassed and exhausted to atmosphere after the first (two) stages of lp compressor. about half of the thrust is produced by the fan exhaust.
-, турбовентиляторный (с дожиганием в вентиляторном контуре) — duct-burning turbofan engine
-, турбовинтовентиляторный — (turbo) propfan engine, unducted fan engine (ufe)
-, турбовинтовой (твд) — turboprop engine
газотурбинный двигатель, в котором тепло превращается в кинетическую энергию реактивной струи и в механическую работу на валу двигателя, которая используется для вращения воздушного винта. — а turboprop engine is a turbine engine driving the propeller and developing an additional propulsive thrust by reaction to ejection of combustion products.
-, "турбовинтовой" (вертолетный, с отбором мощности на вал) — turboshaft engine
-, турбовинтовой, с толкающим винтом — pusher-turboprop engine
-, турбопрямоточный — turbo/ram jet engine
комбинация из турбореактивного (до м-з) и прямоточного (для больших чисел м). — combines а turbo-jet engine (for speeds up to mach 3) and ram jet engine for higher mach numbers.
-,турбо-ракетный — turbo-rocket engine
аналог турбопрямоточному двигателю с автономным кислородным питанием, — а turbo/ram jet engine with its own oxygen to provide combustion.
-, турбореактивный — turbojet engine
газотурбинный двигатель (с приводом компрессора от турбин), в котором тепло превращается только в кинетическую энергию реактивной струи. — a jet engine incorporating a turbine-driven air compressor to take in and compress the air for the combustion of fuel, the gases of combustion being used both to rotate the turbine and to create a thrust-producing jet.
-, установленный в мотогондоле — nacelle-mounted engine
-, установленный в подвесной мотогондоле — pod engine
-, четырехтактный (поршневой — four-cycle engine
за два оборота коленчатого вала происходит четыре хода поршня в каждом цилиндре, по одному такту на ход. такт 1 - впуск всасывание рабочей смеси в цилиндр), такт 2 - матке рабочей смеси, такт 3 - рабочий ход (зажигание смеси), такт 4 - выхлоп (выпуск отработанных газов из цилиндра в атмосферу) — a common type of engine which requires two revolutions of the crankshaft (four strokes of the piston) to complete the four events of (1) admission of or forcing the charged mixture of combustible gas into the cylinder, (2) compression of the charge, (3) ignition and burning of the charge, which develops pressure (power) acting on the piston and (4) exhaust or expulsion of the charge from the cylinder.
-, шаговой (эл.) — step-servo motor
-, электрический — electric motor
устройство, преобразующее электрическую энергию во вращательное механическое движение. — device which converts electrical energy into rotating mechanical energy.
- (-) энергоузел, газотурбинный (ггдэ) — turbine starter /auxiliary power unit, starter/ apu
для запуска основн. двигателей, хол. прокрутки (стартерный режим) и привода агрегатов самолета при неработающих двигателях (режим энергоузла), имеет свой электростартер.
в зоне д. — in the region of the engine
выбег д. — engine run-down
гонка д. — engine run
данные д. — engine data
заливка д. (пд перед запуском) — engine priming
замена д. — engine replacement /change/
запуск д. — engine start
испытание д. — engine test
мощность д. — engine power
на входе в д. — at /in/ inlet to the engine
обороты д. — engine speed /rpm, rpm/
опробование д. — engine ground test
опробование д. в полете — in-flight engine test
опробование д. на земле — engine ground test
останов д. (выключение) — engine shutdown
остановка д. (отказ) — engine failure
остановка д. (выбег) — run down
остановка д. вслествие недостатка масла (топлива) — engine failure due to oil (fuel) starvation
отказ д. — engine failure
перебои в работе д. — rough engine operation
подогрев д. — engine heating
проба д. (на земле) — engine ground test
прогрев д. — engine warm-up
прокрутка д. (холодная) — engine cranking /motoring/
работа д. — engine operation
разгон д. — engine acceleration
стоянка д. (период, в течение которого двигатель не работает) — engine shutdown. one hundred starts must be made of which 25 starts must be preceded by at least a two-hour engine shutdown.
тряска д. — engine vibration
тяга д. — engine thrust
установка д. — engine installation
шум д. — engine noise
вывешивать д. с помощью лебедки — support weight of the engine by a hoist
выводить д. на требуемые обороты % — accelerate the engine to a required speed of %
выключать д. — shut down the engine
глушить д. — shut down the engine
гонять д. — run the engine
заливать д. (пд) — prim the engine
заменять д. — replace the engine
запускать д. — start the engine
запускать д. в воздухе — (re)start the engine
испытывать д. — test the engine
опробовать д. на земле — ground test the engine
останавливать д. — shut down the engine
подвешивать д. — mount the engine
поднимать д. подъемником — hoist the engine
подогревать д. — heat the engine
проворачивать д. на... оборотов — turn the engine... revolutions
прогревать д. (на оборотах...%) — warm up the engine (at a speed of... %)
продопжать полет на (двух) д. — continue flight on (two) engines
разгоняться на одном д. — accelerate with one engine operating
разгоняться при неработающем критическом д. — accelerate with the critical епgine inoperative
сбавлять (убирать) обороты (работающего) д. — decelerate the engine
увеличивать обороты (работающего) д. — accelerate the engine
устанавливать д. — install the engineРусско-английский сборник авиационно-технических терминов > двигатель
-
17 таблица
table
- допусков международного свода аварийных сигналов — table of tolerances international rescue signal table
- настройки (радио) — tuning chart
- ограниченный — table of limits
- основных сочленений и ремонтных допусков — schedule of fits and clearances
таблица, основанная на системе предельных отклонений, составляется на каждый механизм, агрегат или блок оборудования ла. — а schedule of fits and clearances based on the limit system is issued for each mechanism used on aircraft, such as airframe, engine and equipment components.
- (график) перевода величин — conversion table /graph/
даннные графики или таблицы служат для перевода одних единиц измерения в другие. — such graphs or tables are necessary to enable units of one kind to be readily converted into another.
- поправок (указателя скорости и высотомера) — (airspeed indicator and altimeter) error correction table
- посадок и допусков — fits and clearances table
- посадок и зазоров — fits and clearances table
- предельных значений (в разделе "испытание" рр) — table of limits
- расходных материалов — table of consumables /expendable materials/
в таблице расходных материалов (смазки, герметики и т.п.) должны указываться их марки (сорта) и применение. — the table of consumables, such as lubricant and sealant materials, shall show type and usage.
- стандартных условных обозначений на электросхемах — table of standard electrical symbols
- стандартных условных обозначений на электронных ехемах — table of standard electronic symbols
в т. приведены (величины) — table shows..., shown in table are...
допустимые величины (графа т. предельных значений) — limits
из т. (3.1) выбираем, находим... — use /refer to/ table (3.1) to obtain /find/...
наименование ограничения (графа т. предельных значений) — characteristic
включать данные в т. — tabulate the data
заполнять т. — complete the table
составлять т. — construct the tableРусско-английский сборник авиационно-технических терминов > таблица
-
18 функции уровня присоединения в системе автоматизации подстанции
функции уровня присоединения в системе автоматизации подстанции
Функции системы управления подстанцией, которые используют данные одного присоединения и которые выполняются на основном оборудовании этого присоединения, связываясь через логический интерфейс 3 на уровне присоединения и через логические интерфейсы 4 и 5 с уровнем процесса.
Примечание. На рисунке ДА.1 (см. приложение ДА) приведены модель интерфейсов в системе автоматизации подстанции и условные номера интерфейсов.
[ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]EN
bay level functions
functions that use mainly the data of one bay and act mainly on the primary equipment of that bay. Bay level functions communicate via logical interface 3 within the bay level and via the logical interfaces 4 and 5 to the process level, i.e. with any kind of remote input/output or with intelligent sensors and actuators
Examples Feeder or transformer, protection, control and interlocking.
[IEC 61850-2, ed. 1.0 (2003-08)]Тематики
EN
Русско-английский словарь нормативно-технической терминологии > функции уровня присоединения в системе автоматизации подстанции
См. также в других словарях:
Data integrity — in its broadest meaning refers to the trustworthiness of system resources over their entire life cycle. In more analytic terms, it is the representational faithfulness of information to the true state of the object that the information represents … Wikipedia
Data recovery — is the process of salvaging data from damaged, failed, corrupted, or inaccessible secondary storage media when it cannot be accessed normally. Often the data are being salvaged from storage media such as internal or external hard disk drives,… … Wikipedia
Data exchange — is the process of taking data structured under a source schema and actually transforming it into data structured under a target schema, so that the target data is an accurate representation of the source data[citation needed]. Data exchange is… … Wikipedia
Data, context and interaction — (DCI) is a paradigm used in computer software to program systems of communicating objects. Its goals are: To improve the readability of object oriented code by giving system behavior first class status; To cleanly separate code for rapidly… … Wikipedia
Data format management — (DFM) is the application of a systematic approach to the selection and use of the data formats used to encode information for storage on a computer. In practical terms, data format management is the analysis of data formats and their associated… … Wikipedia
Data Format Management — (DFM) is the application of a systematic approach to the selection and use of the data formats used to encode information for storage on a computer. In practical terms Data Format Management is the analysis of data formats and their associated… … Wikipedia
data centre — A dedicated facility for the processing of data, such as payroll and customer records. Because this kind of data is usually processed in huge quantities, powerful mainframe computers are used and are housed in secure and controlled conditions.… … Law dictionary
Data (Star Trek) — Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung. Dieser Artikel beschreibt die wichtigsten Personen im Universum von … Deutsch Wikipedia
Data type — For other uses, see Data type (disambiguation). In computer programming, a data type is a classification identifying one of various types of data, such as floating point, integer, or Boolean, that determines the possible values for that type; the … Wikipedia
Data discrimination — Network Neutrality Related issues and topics Automatic telephone exchange Data discrimination End to end principle Internet Protocol Tiered Internet Bandwidth Throttling … Wikipedia
Data mining — Not to be confused with analytics, information extraction, or data analysis. Data mining (the analysis step of the knowledge discovery in databases process,[1] or KDD), a relatively young and interdisciplinary field of computer science[2][3] is… … Wikipedia